
RDMA Capable iWARP over Datagrams

Ryan E. Grant, Mohammad J. Rashti, Ahmad Afsahi

Electrical and Computer Engineering,

Queen’s University,

Kingston, ON, Canada

{ryan.grant, mohammad.rashti, ahmad.afsahi}@queensu.ca

Pavan Balaji

Mathematics and Computer Science,

Argonne National Laboratory,

Argonne, IL, USA

balaji@mcs.anl.gov

Abstract- iWARP is a state of the art high-speed connection-

based RDMA networking technology for Ethernet networks to

provide InfiniBand-like zero-copy and one-sided

communication capabilities over Ethernet. Despite the benefits

offered by iWARP, many datacenter and web-based

applications, such as stock-market trading and media-

streaming applications, that rely on datagram-based semantics

(mostly through UDP/IP) cannot take advantage of it because

the iWARP standard is only defined over reliable, connection-

oriented transports. This paper presents an RDMA model that

functions over reliable and unreliable datagrams. The ability

to use datagrams significantly expands the application space

serviced by iWARP and can bring the scalability advantages of

a connectionless transport to iWARP. In our previous work,

we had developed an iWARP datagram solution using

send/receive semantics showing excellent memory scalability

and performance benefits over the current TCP-based iWARP.

In this paper, we demonstrate an improved iWARP design that

provides true RDMA semantics over datagrams.

Specifically, because traditional RDMA semantics do not

map well to unreliable communication, we propose RDMA

Write-Record, the first and the only method capable of

supporting RDMA Write over both unreliable and reliable

datagrams. We demonstrate through a proof-of-concept

software implementation that datagram-iWARP is feasible for

real-world applications. Our proposed RDMA Write-Record

method has been designed with data loss in mind and can

provide superior performance under conditions of packet loss.

It is shown through micro-benchmarks that by using RDMA

capable datagram-iWARP a maximum of 256% increase in

large message bandwidth and a maximum of 24.4%

improvement in small message latency can be achieved over

traditional iWARP. For application results we focus on

streaming applications, showing a 24% improvement in

memory usage and up to a 74% improvement in performance,

although the proposed approach is also applicable to the HPC

domain.

Keywords - iWARP; RDMA; �etworking; Datagrams; High

performance networks

I. INTRODUCTION

Ethernet is the undisputed technology of choice for
modern commercial data centers. Unfortunately, many of
the technical enhancements in use in the high performance
networking area have not been incorporated into Ethernet.

Efforts have been made utilizing Transmission Control
Protocol over IP (TCP/IP) offloading schemes such as
stateless offloads (checksumming, segmentation etc.) and
stateful TCP offload engines, with stateless offloading being
implemented more frequently than stateful offloading in
commercial devices. iWARP (Internet Wide Area RDMA
Protocol) [23] was proposed to offer Remote Direct Memory
Access (RDMA) functionality over Ethernet. This allowed
for significantly lower latencies and reduced CPU utilization
by offering kernel bypass, zero-copy based communications,
and non-interrupt based asynchronous communication [1].

Despite the benefits offered by iWARP, many datacenter
and web-based applications, such as stock-market trading
and media-streaming applications, that rely on datagram-
based semantics (mostly through the User Datagram
Protocol over IP (UDP/IP)) cannot take advantage of it
because the iWARP standard is only defined over reliable,
connection-oriented transports. Moreover, currently one-
sided RDMA operations (such as RDMA Write) are only
defined on reliable and connected transports. This
effectively limits the number of applications that could
utilize iWARP and its RDMA capabilities by excluding
UDP, which according to [2] could comprise more than 90%
of all Internet consumer traffic by 2014.

Connection-based iWARP has a number of limitations
that make it inappropriate for large-scale systems. First, the
scalability of the current iWARP is limited since the
hardware needs to keep data for each and every connection
in hardware or host memory. This limits its effectiveness for
applications that are required to service a very large number
of clients at a single time. In addition, the current iWARP
standard suffers from numerous overheads associated with
connection-based transports such as TCP and Stream Control
Transmission Protocol (SCTP) [17]. High overhead
reliability and flow-control measures in TCP and SCTP
protocols impose the burden of unnecessary communication
processing on applications running on low error-rate
networks (such as High Performance Computing (HPC) and
data center clusters) as well as applications which do not
require reliability.

Moreover, the complexities and overhead associated with
packet marking, which is required to adapt the message-
oriented iWARP stack over the stream-oriented TCP
protocol, further reduce the overall message rate that can be
achieved with the current TCP-based iWARP standard.

In [22], we proposed send/recv datagram support for
iWARP for use in high-performance computing
environments, with corresponding reliability mechanisms. It
has been demonstrated that in such HPC applications,
datagram-iWARP can provide significant memory savings of
over 30% and runtime improvements of up to 40% on
moderately sized HPC clusters, while providing higher
bandwidth than connection-based iWARP. This paper
extends the work in [22] by proposing the first RDMA
operation over unreliable datagrams that can significantly
increase iWARP performance and scalability and expand the
application space that iWARP can serve to include some
very network intensive applications.

In order to support RDMA over unreliable datagrams, in
this paper we demonstrate RDMA Write-Record, a proposal
for the design and implementation of, what is to our
knowledge, the first RDMA design over an unreliable
datagram transport. It is designed to be extremely
lightweight and to be used in an environment in which
packet loss occurs. This allows for its use in situations
where data loss can be tolerated, but can be supplemented by
a reliability mechanism (like reliable UDP) for those
applications that cannot deal with data loss. RDMA Write-
Record is particularly useful in the circumstances that a
server is sending a large chunk of data to a client. In the
situation where the client does not need a guarantee that all
of the message will arrive entirely intact, such as streaming
audio or online gaming, where missing data can be skipped
over with little noticeable degradation, this can be of great
use. We believe that the proposed design for RDMA Write-
Record is not limited to iWARP and can be utilized in any
other RDMA-enabled network such as InfiniBand [12].

Applications in both HPC and data center domains can
significantly benefit from the RDMA capable datagram-
iWARP. VOIP and streaming media applications are
typically built on top of protocols like Real-time Transport
Protocol (RTP), which can utilize UDP as a lower layer.
The large overhead that processing such huge amounts of
data creates can be overcome by using a hardware RDMA
solution that offloads the intensive data shuffling activities
from the CPU and performs them directly to/from memory.
By using RDMA capable datagram-iWARP we can
significantly reduce the CPU load of commercial systems
delivering high bandwidth media, allowing for lower overall
system cost due to much lower CPU requirements while
providing the required performance to utilize 10-gigabit
Ethernet hardware. In addition, because we do not need to
keep connection data for each client, a datagram based
solution is much more scalable than traditional iWARP.

A major factor blocking the widespread adoption of
datagram-iWARP could be the application interface. For
traditional iWARP this has been solved by the adoption of
the Sockets Direct Protocol (SDP) [20]. iWARP utilizes a
set of verbs for communication that are not immediately
compatible with the traditional socket interface. The task of
re-writing applications to make use of iWARP verbs is a
large and intensive one. Therefore SDP was designed to
translate sockets based applications to use the verbs
interface. SDP does not provide any support for datagram-

based applications, only those using TCP, as it closely
replicates the behaviour of a stream socket, not a datagram
socket. Therefore, we have designed a socket interface to
allow applications to harness the speed and features of
datagram-iWARP without having to re-write any software.
This interface is a proof of concept to show that datagram-
iWARP can be adapted to use such important interfaces. In
addition to its functionality over sockets, datagram-iWARP
is also applicable within an HPC context using verbs. We
will concentrate on sockets-based application in this paper.

Through our verbs level tests, we find that RDMA Write-
Record over datagrams has a maximum bandwidth
improvement of over 256% compared to Reliable
Connection (RC) RDMA Write. We also see over a 24%
improvement in small message latency using UD RDMA
Write-Record over RC RDMA Write. Application results
using our socket interface show a 24.1% memory usage
improvement for a SIP server application and performance
improvements for SIP applications (43.1%) and media
streaming (VLC) applications (74.1%).

This paper is organized as follows. In Section II, we
discuss the current iWARP standard. Section III reviews
related scholarly work. Section IV, details the changes
required to iWARP to include datagram functionality, as
well as details about how we can provide one-sided RDMA
operations over datagrams. Section V discusses the design
of our software implementation. Section VI details the
experimental platform and our evaluation results. Section
VII provides our conclusions and discusses future work.

II. IWARP BACKGROUND

Proposed by the RDMA Consortium [23] in 2002 to the
IETF [13], iWARP is a specification that uses a user level
stack over either TCP or SCTP protocols over Ethernet. It
uses an interface referred to as verbs in order to interact with
the stack [10]. These verbs are different in semantics than a
traditional socket interface as iWARP was designed as an
alternative to the operating system networking stack. Figure
1 shows the iWARP stack next to the traditional OS TCP/IP
stack for comparison, and illustrates how the iWARP stack
can completely bypass the kernel’s networking stack.

Kernel bypass has several advantages, it can prevent
extra copies of the data being made during processing (zero
copy) and it completely offloads the processing overhead
onto the Network Interface Card (NIC) hardware away from
the CPU. In order to successfully offload this task, the NIC
needs to have both stateless and stateful offloading
capabilities. This allows it to perform all of the tasks
normally done in the OS networking stack in hardware.

The iWARP stack consists of three unique fundamental
layers underneath the verbs interface, the Remote Direct
Memory Access Protocol (RDMAP) layer, the Direct Data
Placement (DDP) layer and the Marker PDU Alignment
(MPA) layer, as shown in Figure 1. A NIC that implements
these layers on top of TOE is called and RDMA-enabled $IC
or RNIC.

The RDMAP layer [24] is responsible for providing the
basic communication primitives, namely the send, receive,
RDMA write and RDMA read functions. It directly uses the

Figure 1. iWARP standard stack compared to host-based TCP/IP

DDP layer to accomplish this and is a relatively lightweight
layer. All requests to the RDMAP layer from the verbs
interface are delivered in order to the DDP layer.

The DDP layer [25] allows for data to be directly fetched
from or written to memory without any intermediary copies.
For the untagged model (send/recv), it places incoming data
by matching the incoming packet’s header to an existing
sink. The receiver side handles all of the buffer management
and determines where incoming data will be placed. The
communication between both sender and target utilizes
queues at each side, and is referred to as a Queue Pair (QP).
In the tagged model (RDMA Write/Read), the header
contains a steering tag (STag) that indicates the memory
location where the data should be placed. This STag is
known by the sender of the data via a previous advertisement
of the available buffers on the receiving node. Data to be
written or read from advertised buffers are accompanied by
an offset value and a length, in order to be properly placed.
The receiving machine enforces the requirement that the
requested memory location must be registered with the
device as a valid memory region before placing the data.

The MPA layer is responsible for placing markers in the
outgoing messages and removing them from incoming
messages [4]. These markers point to the appropriate header
for a given message. This is required in a stream-based
protocol as the messages can be segmented by intermediate
devices, which requires that there be some way to determine
what message an incoming packet belongs to. Such
functionality is not needed for datagrams as they have
defined message boundaries and are not segmented by
intermediary devices. This allows message-based protocols
to avoid this costly activity of inserting and removing
markers from packets.

III. RELATED WORK

Evaluations of 10 Gigabit Ethernet NICs offload engines
[7], and a comparison of the high-speed networks discussed
in [21] have been previously performed. The

implementation of the current iWARP standard in software,
originated from a project by OSC [18] that provides both
user-space [5] and kernel space [6] implementations. The
user-space part of this implementation is the code-base for
implementing datagram-iWARP. The SoftRDMA project at
IBM Zurich laboratory has finished a software iWARP
solution [14] to be integrated into Open Fabrics Enterprise
Distribution stack [19].

Beside the iWARP solution, there have been other
approaches with the goal of improving Ethernet efficiency.
The Open-MX project is an open-source implementation of
Myrinet Express over Ethernet (MXoE) [9]. Local Area
Network (LAN) RDMA technology such as MXoE [16] and
InfiniBand [12] over Ethernet (IBoE) have shown the
effectiveness of RDMA over LANs. IBoE, also called
RDMA over Ethernet (RDMAoE) is designed to take
advantage of InfiniBand’s RDMA stack by replacing
InfiniBand’s link layer with Ethernet [27]. This technology
encapsulates InfiniBand reliable and unreliable services
(only send/recv is defined over unreliable datagrams) inside
Ethernet frames.

A new set of standards referred to as Converged
Enhanced Ethernet (CEE) has opened up issues revolving
around providing advanced features over Ethernet networks.
Some industry vendors and researchers [3] are also
proposing to include RDMA functionality over CEE
(RDMAoCEE).

Our work in [22] introduced send/recv datagram-iWARP
in an HPC context over Message Passing Interface (MPI)
[15]. We have defined a send/recv iWARP datagram
solution that works over both unreliable and reliable
datagram transports. We analyzed the performance of such a
scheme within a high-performance computing context using
an MPI interface. We found that the datagram based iWARP
solution increased bandwidth by up to 20% and decreased
latency by up to 16% while providing a 30% improvement in
application memory usage and a 40% reduction in runtime
for scientific applications. This work expands on that
previous work by introducing RDMA Write-Record and our
sockets interface, as well as studying the performance of
datagram-iWARP in a data center context and under
conditions of packet loss.

IV. DATAGRAM-IWARP

Datagram-iWARP expands on the iWARP standard, to
add support for UDP alongside TCP and SCTP. There are
several applications in which UDP is preferable over TCP or
SCTP. This section will discuss the benefits of datagram-
iWARP as well as the design of datagram-iWARP for both
tagged (one-sided) and untagged (send/recv) operations.

A. Motivation

Datagram iWARP brings the advantages of high-speed
networking technology to applications that are currently
bound by the limitations of traditional Ethernet. One of the
most important advantages is the increased performance that
using datagrams provides. The high overhead reliability and
flow control methods used in TCP [11] are not present in
UDP, which allows it to function with reduced latency and

SW

NIC

HW

User Applications

Verbs Interface Socket Interface

RDMAP

DDP

MPA

TCP

SCTP

Ethernet Link layer

Socket

buffer

Kernel

processing

Interrupt

handling

OS

TCP/IP

stack

NIC

HW

SW

NIC Driver

RNIC Driver

increased throughput. TCP and SCTP both guarantee in-
order delivery of data. Therefore, in the case of packet loss,
there can be a significant delay in delivering data that have
already arrived but is blocked by an incomplete message at
the head of the receive queue, causing network jitter. The
goal of using UDP as opposed to SCTP or TCP is to provide
a very low overhead lightweight solution that provides a
transport to applications capable of handling an unreliable
transport, such as applications that handle large amounts of
time sensitive data, like online gaming. In this application,
there is little benefit to taking advantage of reliability or in-
order delivery, as the data are only valid for very short
periods. In addition, such applications are very
computationally intensive so offloading communication is
very desirable.

In addition, because datagram-iWARP has defined
message boundaries via the datagrams, it avoids the
requirement of having to mark packets to determine message
boundaries. Packet marking which is used to correct the
semantic mismatch between message-based iWARP and
stream-based TCP, is a high overhead activity and is very
expensive to implement in hardware [1]. Therefore,
avoiding it in datagram-based UDP is a significant advantage
over TCP. SCTP also has defined message boundaries, but it
provides even more features than those in TCP and
consequently is more complicated. SCTP is also not as
mature as either TCP or UDP, and as such is still in the
process of being tuned for performance on various platforms.

 The other shortcoming of connection-based transports is
that they limit resource sharing among different connections.
Therefore, resource usage such as memory consumption will
exponentially increase as the scale of the system increases.
Although methods such as shared receive queues (SRQ)
slow down the connections’ memory usage trend to some
extent, such methods are still not as scalable as true
datagrams.

A datagram-based iWARP avoids many complexities
associated with connections. It avoids the overhead of MPA
layer and complicated reliability measures in TCP and
SCTP. It also requires a smaller memory footprint than the
current connection based standard over TCP or SCTP, since
it does not have to keep information regarding connections
[22]. When utilizing OS bypass, such memory savings are
important, as state information needs to be held in memory
on the RNIC, or be accessed on the system through memory
accesses. In addition, by offloading such tasks onto a NIC,
and using RDMA, we can leverage a common method of
significantly reducing the CPU requirements for maintaining
high bandwidth data streams while bringing this technology
into existing data centers that provide services that take
advantage of UDP. This allows for businesses to concentrate
their investment directly into networking technologies and
capacity instead of the CPU hardware required to support
such large bandwidth or low latency requirements, a
common benefit of Wide Area Network (WAN) capable
RNICS.

The lowered complexity of datagram-iWARP means that
if fabricated as a stand-alone solution, it can be fabricated at
much lower cost than traditional iWARP. Alternatively, it

also provides an inexpensive addition to existing iWARP
silicon. With the increase in datagram based Internet traffic
[2], it is important to improve the performance, and reduce
the server side overhead of such traffic using the existing
infrastructure. At the consumer level, Voice over IP (VOIP)
applications, on-demand video, rich streaming media
content, high quality Internet radio, and low-latency multi-
player online gaming are all applications that can benefit
from using an RDMA enabled datagram-based Ethernet.
Broadcast and multicast support are also attractive features
of using datagrams. In particular, a multicast capable
iWARP solution would be useful in providing high
bandwidth media while leveraging the other benefits of
datagram-iWARP.

B. Design

Datagram iWARP represents a significant shift in the
overall design of iWARP, as the current standard is based
entirely upon reliable connection-based transports that
provide ordered delivery. All of these requirements are not
supported with UDP, and although a reliable UDP
implementation can provide some of the required features, it
still does not match the existing standard. It is important that
a design be compatible with both unreliable and reliable
datagram transports, as applications that currently use UDP
as a transport are capable of handling data loss, like media
streaming, VOIP applications or streaming data such as
financial market feeds. While data loss is not desired, it is
not a fatal error in such applications, and therefore the
required overhead for reliability may be avoided in some
circumstances. In addition, some socket-based applications
for commercial data centers must already assume an
unordered transport, as they make use of UDP. However,
applications that currently use TCP can also be supported via
a reliable UDP implementation that provides the order and
reliability guarantees they require. In the case of one-sided
RDMA operations like RDMA Write, the order of the data is
not important unless the same memory location is being
written to multiple times with no control messages, a
condition that is highly not recommended in the existing
standard.

A high level overview of some of the required added
support for datagram-iWARP can be seen in Figure 2. It
should be noted that datagram-iWARP does not require the
MPA [4] layer. This is due to the fact that datagram packets
are never segmented by intermediate routers, and therefore
no middle-box fragmentation problem exists with datagrams,
as it does with stream-based protocols. This avoids the
costly exercise of inserting markers into the data payload and
consequently will help to enhance performance, as fewer
operations on the data are required before placing it out on
the transmission line. These changes are compatible with
both unreliable and reliable lower UDP layers.

Our datagram-iWARP solution is mostly compatible with
the existing iWARP standard. However, several layers, both
DDP and RDMAP are defined as requiring that the lower
layers be reliable. Therefore specific standards requirements
must be relaxed in order to facilitate datagram iWARP, in
addition to other changes required to support datagrams that

are not explicitly contrary to the defined standard. Such
changes are:

1. In the DDP standard [25], Section 5, item 3, requires
that the Lower Layer Protocol (LLP) must reliably deliver all
packets. This requirement must be relaxed for unreliable
datagram-iWARP.

2. The DDP standard [25], Section 5 item 8, states that if
an error happens on an LLP stream, the stream must be
marked as erroneous and no further traffic can travel over it.
This requirement is also loosened in datagram-iWARP, as
we don’t invalidate LLP streams (or QPs) when errors occur
due to data loss, they are simply reported, but the QP is not
forced into the error state for unreliable service. In the case
of a reliable LLP, the error should be reported, but the
connection teardown is not required, as no such connection
exists, the QP simply transitions into the error state.

3. The RDMAP Standard [24] Section 5.1 states that the
LLPs must provide reliable in-order delivery of messages.
This cannot be provided for in datagram-iWARP, but should
be handled by applications as current UDP applications or
Upper Layer Protocols (ULPs) currently do. For a Reliable
Datagram (RD) solution, this is not required as an RD LLP
should provide order and reliability guarantees.

4. Datagram iWARP requires either the establishment of
new verbs, or the adaptation of existing verbs for methods of
creating and manipulating datagram iWARP sockets. We
require a datagram type QP, as well as a method for
initializing datagram QPs. In addition, we require verbs that
allow for the inclusion of destination addresses and ports
when posting a send request. We also require a datagram
receive verb that allows for the sender’s address and port to
be reported back to the calling application. This is
accomplished by expanding the work request elements to
include the source address of an incoming message. In
addition the completion queue elements need to be altered to
include information concerning the source address and port
for incoming data. These changes are required throughout
the stack to support datagrams.

Figure 2. Changes for datagram-iWARP

5. Datagram-iWARP does not require packet marking
for either UD or RD modes, therefore the MPA layer [4] can
be removed.

6. Operating Conditions: Datagram-iWARP always
requires the use of Cyclic Redundancy Check (CRC32)
when sending messages. In addition, there is no initial set up
of operating conditions exchanged when the QP is created;
the operation conditions are set locally, and should be
communicated through the ULPs. Given that we are using
an unreliable transport, using messages spanning multiple
datagrams makes the system vulnerable to packet loss.
While useful in conditions of low network congestion, it can
cause significant problems based on the existing standard.
With datagram-iWARP it is recommended that the
application layer perform segmentation and assembly for
messages larger than the defined maximum UDP packet size,
64KB. Although for UD RDMA operations it is possible to
perform reassembly of larger messages in the iWARP stack.

1) Send/Recv over Datagrams - The design for send/recv

operations is discussed in detail in [22]. It is capable of

using many of the existing designs in the iWARP stack. The
iWARP stack needs to be altered such that it can handle a
connection-less based traffic flow, and that it can report the
source of incoming traffic back to the calling application.
To support this several new verbs have been added, such as
datagram versions of the send and receive posting request
verbs, although such verbs could be integrated with the
existing verbs. Our implementation was also adapted to
allow for opening iWARP sockets that use datagrams.
These changes are in line with those detailed in Section
IV.B.

Datagram-iWARP matches incoming packets at the DDP
layer with the appropriate receive WR. It does not guarantee
that the order in which the incoming packets are completed is
the order in which the send side actually transmitted the data.
As such, the applications must be able to handle out of order
data, or a reliable UDP implementation must be used that is
capable of ensuring in order delivery. In order to prevent
polling on operations that will never complete (in the event
that incoming data are lost and no more incoming data are
expected) it is essential that the completion queue be polled
with a defined timeout period. This allows for the failure to
receive a given packet.

The send/recv verb semantics match those used for
sockets very well. As such, send/recv functionality is
integrated into our iWARP socket interface discussed in
Section V.A.

2) RDMA Write over Datagrams - There is currently no

method proposed that allows for RDMA operations over
unreliable datagrams. The one-sided RDMA write operation
requires a significant change in design due to the unreliable,
out-of-order nature of the transport. The defined RDMA
Write operation requires the lower layer provide in-order
delivery. For datagram-iWARP, using a reliability scheme
at the lower layers cannot be assumed, so we can be assured
of neither reception nor in-order guarantees. Therefore, we
need an operation that can determine the validity of data on

Verbs
Modify verbs & data structures

to accept datagrams.

Define datagram QPs & WRs

No streams/connections. Use

UDP sockets and functions.

Detect failed operations and

recover buffers

MPA bypassed for datagrams.

Use UDP for UD QPs.

RDMAP

DDP

MPA

Transport

(TCP/IP)

Socket

Interface

Design and implement socket

interface (optional)

the target side without a supporting operation generate at the
source side.

Currently, RDMA Write over reliable connections can
notify the target application of when data is valid by
completing a send/recv operation after the successful RDMA
Write [24]. This has the purpose of informing the
application that there is valid data to read. Alternatively,
some implementations also use a flagged bit in memory that
is polled upon, and when set, the operation is known to be
complete. Over an unreliable transport this does not work
for several reasons. Firstly, the RDMA write may not
complete successfully, and the send/recv operation does,
which causes the target to receive invalid data (as the source
considers the write operation complete when all data have
been passed to the LLP). Alternatively, the RDMA
operation may complete but the send/recv is lost. Using
high-level acknowledgments is not an ideal solution to these
problems as such acknowledgements may also be lost and
cause unnecessary re-transmission.

3) RDMA Write-Record: We propose a new method
called RDMA Write-Record for use over unreliable
datagrams. RDMA Write-Record must log at the target side
what data has been written to memory and is valid. The
target application can then request this information to
determine what data is valid by reading the appropriate
completion queue entries. These completion queue entries
can be designed as either individual entries for each logical
chunk of data in a message or can be a validity map;
essentially an aggregated form of individual completion
notifications. For messages of a size less than or equal to the
Maximum Transfer Unit (MTU) of the LLP, this notification
is very simple, comprising only a single completion entry or
single entry validity map. This method differs from
send/recv over UD as there is no matching receive request
posted, the data is simply placed in the correct memory
location. However, unlike a traditional RC RDMA Write
operation, no further communication is required between the
source and target and the source completes the operation at
the moment that the last bit of the message is passed to
transport layer. The differences between the two approaches
can be seen in Figure 3.

RDMA Write-Record is an especially useful operation
for datagrams as it has very low latency achieved by being
able to directly write into allocated memory with a pre-
determined data sink location. It also fits well into the
semantics for sockets, in that it can easily be used within a
send/recv semantic that is compatible with socket-based
applications. The send side initiates a request, which
completes as soon as the data are delivered to the UDP layer.
In order to support a socket type interface, the receiver can
then poll for the completion of an RDMA Write-Record
operation. This method is also valid for a reliable transport,
although in practice, the solution of polling on a signalling
bit to determine completion is a lower-overhead method of
performing an RDMA operation. In a reliable transport, the
in-order and reliable delivery make the monitoring of what
data is valid unnecessary at the iWARP level, as it is handled
at the lower level.

RDMA Write-Record is somewhat similar to send with
the solicited event verbs defined for iWARP. In send with
solicited event, the target machine can receive a send, match
it to a posted receive and signal an event, if the system
supports such an operation (for example an interrupt). This
differs from RDMA Write-Record as it is a two-sided
operation, and it also creates an event at the target, where
RDMA Write-Record simply creates a completion event
queue element, that must be actively read in order to
determine that the operation completed. RDMA Write-
Record also has some similarities with the RDMA Write
with immediate verb defined for InfiniBand networks.
RDMA Write with immediate differs from our RDMA
Write-Record as it requires that a receive be posted at the
target to receive the immediate data. Our proposed solution
does not require a posted receive whatsoever, making it a
truly one-sided operation.

Figure 3. Comparison of RDMA Write over RC and RDMA Write-

Record over UD

RDMA Write

Source Target

Write to memory

Data Written

Source Target

Send Request

Receive Serviced

Data now valid

RDMA Write-Record

Source Target
Write to memory

Data chunk location and size

recorded in completion queue

Application reads valid data
location and size

4) Packet Loss Design Considerations - In designing a
networking solution operating over an unreliable transport,
consideration must be made for packet loss, particularly if
message sizes greater than the network MTU are supported.
We have designed support for partial message placement
through RDMA Write-Record. This allows for some data
loss, for applications that can tolerate some packet loss, such
as streaming audio, or online gaming. A small subset of
applications also exists that is capable of determining if the
incoming data feed is valid or not and compensating for
invalid inputs. We provide support for informing
applications of the valid memory areas that have been
written to, in order to support applications that can handle
invalid input streams as well as those that can tolerate some
data loss. The performance benefits of this approach versus
the whole message delivery provided by send/recv is
illustrated in Section VI.A.

WANs normally run using a 1500 byte MTU, with
applications using message sizes smaller than the MTU.
Datagrams are technically defined up to a maximum size of
64 KB. Therefore, it is preferable to package each message
sent over RDMA Write-Record as a complete unit that spans
only one datagram packet, preferably the size of the network
MTU. In order to enhance relatively error free local area
network transmission performance, and make our solution
compatible with varied network MTUs, we have designed in
support for larger message sizes than the expected network
or datagram MTU. This can lead to efficiency increases for
applications that can use large messages over low-loss
networks. Its use over existing WAN infrastructure,
particularly congested networks, is limited as the penalty for
packet loss can be high.

Typically, in the event of packet loss while sending large
multi-packet datagram messages, the entire message must be
discarded. This can be alleviated to some extent by the
addition of a reliability mechanism for UDP, but it is
preferable to have multiple independent requests in an
environment with frequent packet loss. With the proposed
changes to Ethernet, like CEE, that defines error free
channels; systems can make use of large message sizes to
increase efficiency.

V. SOFTWARE IMPLEMENTATION

The software implementation of datagram-iWARP was
developed using a TCP-based iWARP implementation from
[5]. A socket interface was added, which is described in
more detail in Section V.A.

The software implementation replicates the functioning
of all of the iWARP layers as a user-level library. It
provides a verbs interface that applications can use to
interact with the iWARP stack. The expanded stack is
shown in Figure 4. The changes required to the verbs,
RDMAP, and DDP layers as described in Section IV.B were
implemented in this software stack. In addition, changes
were required to the code to allow for the use of datagram
transports at a lower layer that would not be required in a
hardware implementation of datagram-iWARP. Our
software implementation takes advantage of I/O vectors to
minimize data copying and enhance performance.

Figure 4. The software implementation of datagram-iWARP

In addition, it requires the use of CRC at the DDP layer to
ensure correct reception of individual packets. CRC checks
may be performed at the UDP layer, and therefore it would
be redundant to do so again at the DDP layer. Therefore, it
is recommended that CRC checking be disabled at the UDP
layer to further enhance performance.

A. iWARP Socket Interface

The iWARP socket interface was designed to serve as a
layer that translates the socket networking calls of
applications over to use the verb semantics of iWARP. This
has the significant benefit of allowing existing applications
to take advantage of the performance of iWARP while not
requiring that they be re-developed to use the verbs interface.
This interface is a proof of concept showing that it is
possible to write a user-level interface for socket applications
to directly use datagram-iWARP hardware. Such
functionality is provided for reliable connection-based
RDMA through the Sockets Direct Protocol [20]. No such
protocol exists for unreliable transports, although the
concepts used in SDP could be adapted to offer functionality
for datagram-based traffic. Therefore, our socket interface
should be regarded as a demonstration that such functionality
could conceivably be implemented in a full SDP-like
protocol specification. In order to fairly compare the UD vs.
RC results, support for both UD and RC operations has been
included in our socket interface implementation.

1) Design - Our socket interface works by dynamically
preloading it before running an application, overriding the
operating system networking calls to sockets, re-directing
them to use iWARP sockets instead. Unlike SDP, our design
does not override the creation of sockets, only the data
operations related to them, and does not seek to replicate
datagram socket behaviour like SDP does for TCP. As such,
it uses the socket initialized by the application directly over
the iWARP software stack. In a hardware solution, this
design would be expanded to override all socket creation as
well, so that the relevant hardware QP could be created and
associated with a “dummy” file descriptor number, and a full
protocol specification could be developed to enable more
efficient use of RDMA Write-Record.

Socket Interface (optional)

Verbs interface - RC & UD

RDMAP layer - RC & UD

DDP layer - RC & UD

MPA

TCP UDP

Linux kernel

Ethernet link layer

Verbs Small Message Latency

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128 256 512 1K

Message Size (Bytes)

L
a

te
n

c
y

 (
µ

s
)

UD Send/Recv RC Send/Recv

UD RDMA Write-Record RC RDMA Write

Verbs Medium Message Latency

0

100

200

300

400

500

600

700

800

900

2K 4K 8K 16K 32K 64K

Message Size (Bytes)

L
a

te
n

c
y

 (
µ

s
)

UD Send/Recv RC Send/Recv

UD RDMA Write-Record RC RDMA Write

Verbs Large Message Latency

0

2000

4000

6000

8000

10000

12000

128K 256K 512K 1MB

Message Size (Bytes)

L
a

te
n

c
y

 (
µ

s
)

UD Send/Recv RC Send/Recv

UD RDMA Write-Record RC RDMA Write

Figure 5. UD iWARP vs. RC iWARP Verbs latency

The iWARP socket interface operates by allowing for
both TCP and UDP-based iWARP sockets to be opened,
using the relevant iWARP lower layer protocol. It tracks the
socket to QP matching so that each socket is only associated
with a single QP. For datagram-iWARP, the work request
posted to the QP is assigned a destination address at the time
of a send.

When a call is intercepted, the interface determines the
type of socket that is performing the request, and uses either
RC or UD as appropriate for the socket type. Information
about the destination address, source address or port is not
stored in the interface, only the QP to file descriptor mapping
and whether the file descriptor has been previously
initialized as an iWARP socket. The remaining required
information is stored in the socket data structure.

This solution is much more lightweight than traditional
SDP, but less robust as applications can modify sockets. As
such it is suitable for determining the performance of
datagram-iWARP with some popular socket-based
applications. However, it is not a comprehensive alteration
of the existing SDP standard in order to adapt it specifically
to use a datagram semantic. Altering SDP would have the
positive benefits of hiding the socket creation from the
applications, and is essential for a hardware implementation
to separate the socket based networking semantic at the
application level from the verbs based semantics of the
hardware itself.

Such an addition to the SDP protocol would be lengthy
and require major changes or additions to the existing
standard. Our goal with the iWARP socket interface is to
demonstrate that a datagram socket to verbs translation is
possible, and demonstrate the potential benefits that
datagram-iWARP could bring to existing datagram sockets-
based applications.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

This section details the experimental platform used for
performance testing the datagram-iWARP implementation.
It also reviews the performance results of verbs level
microbenchmarks for all of the discussed modes of

operation, and investigates the performance of two
applications, a media streaming application VLC [28] and a
SIP [8] application/benchmark SIPp.

The experimental results were run on two nodes, each
with two quad-core 2GHz AMD Opteron processors with a
512KB L2 cache per core and 8MB shared L3 cache per
processor chip, 8GB RAM and a NetEffect 10-Gigabit
Ethernet (10GE) card connected through a Fujitsu 10-Gigabit
Ethernet switch. The OS used was Fedora Core 12 (kernel
2.6.31).

A. Microbenchmark Performance Results

1) Latency and Bandwidth - The results of the verbs

latency of datagram iWARP are shown in Figure 5, for

send/recv, RC RDMA write and UD RDMA Write-Record.

We can observe that the lowest latencies for small messages

are UD send/recv and UD RDMA Write-Record, which are

in the range of 27-28µs for messages less than 128 bytes.
Therefore in terms of latency datagram-iWARP is

consistently better than RC send/recv and RC RDMA Write,
which has latency around 33µs for messages under 128 bytes
long. For message sizes up to 2KB, UD send/recv offers a
18.1% improvement in latency over RC send/recv iWARP,
while UD RDMA Write-Record offers a 24.4%
improvement over RC RDMA write. For messages between
16KB to 64KB we can observe that the performance of RC
send/recv is slightly better than that of UD RDMA Write-
Record and UD send/recv, but the UD based iWARP
solution (send/recv and Write-Record) have better latencies
for larger message sizes.

Figure 6 shows the unidirectional bandwidth in which
one side is sending back-to-back messages of the same size
to the other side. The performance of messages between
1KB and 1.5KB is of great importance as such message sizes
are the most likely to be used in the delivery of media. For
1KB messages UD RDMA Write-Record has a bandwidth of
188.8% higher than RC RDMA Write and UD send/recv has
a maximum bandwidth of 193% higher than that of RC
send/recv.

UniDirectional Bandwidth

0

50

100

150

200

250

1 4 16 64 256 1K 4K 16K 64K 256K1MB

Message Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

UD Send/Recv RC Send/Recv

UD RDMA Write-Record RC RDMA Write

Figure 6. Unidirectional Verbs Bandwidth

For messages larger than 1.5KB, multiple datagrams
comprise a single message, and they are recombined at the
receiver to form the full message. Such a scheme is only
useful in networks with low packet loss rates, but the results
in such an environment are excellent. We find that for very
large messages, UD RDMA Write-Record is the dominant
method. Examining the bandwidth results for large
messages (larger than 128KB) in Figure 6, we can observe
that UD iWARP is the winner. UD send/recv offers a
maximum of 33.4% improvement over RC send/recv
occurring at 256KB messages. Most importantly, RDMA
Write-Record has a significant 256% advantage at message
sizes of 512KB over RC RDMA Write.

2) Packet Loss and Performance - In order to study the
proposed system under packet loss conditions, the Linux
traffic control provisions. Using the traffic control
mechanisms, a FIFO queue that normally dequeues messages
as fast as they can be delivered to the underlying hardware
was configured to drop packets at a defined rate. By
examining the bandwidth of UD send/recv datagram-iWARP
under various packet loss conditions in Figure 7, we can see
that the theoretical evaluation done in the design stage
follows the results seen under real conditions. For the UD
send/recv mode, the impact of packet loss is significant for
large message sizes even under very low packet loss
conditions. A loss rate of 0.1% is close to the observed
packet loss rates for intra-US web traffic, while a 0.5% loss
rate is in line with expectations of loss between a western
European-US transmission [26]. Packet loss rates of 1-5%
are observable for traffic to such locations as Africa and
parts of Asia. As such we can observe that the solution of
partial delivery of messages improves performance over the
required full message delivery used in our send/recv method.

Figure 8 illustrates that the partial RDMA Write-Record
method performs better in low packet loss conditions even
for larger message sizes. We observe a drop at 64KB
messages as these messages exceed the maximum sized
MTU of the UDP layer, requiring multiple UDP messages.

UD Send/Recv Bandwidth under Packet Loss

Conditions

0

50

100

150

200

250

1 4 16 64 256 1K 4K 16K 64K 256K 1MB

Message Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

0.1% loss 0.5% loss 1% loss 5% loss

Figure 7. UD Send/Recv Bandwidth Under Packet Loss Conditions

For messages under 64KB and greater than the network
MTU of 1500 bytes, multiple packets are segmented at the
sender and recombined at the target machine and delivered
by the UDP layer as a single large message. Any loss of the
smaller packets making up this large UDP packet results in
the entire (up to 64KB) message being dropped. For
messages larger than 64KB, the partial placement feature of
RDMA Write-Record makes it capable of maintaining high
bandwidth under packet loss conditions. Segments (64K) are
placed in memory as they arrive and their reception and
location is recorded. So for messages that comprise many
64KB UDP segments some of the overall message can be
saved even if some 64KB UDP segments are discarded.
However, high packet loss rates can cause total breakdown
of the bandwidth, as the final packet must arrive for the
partial message to be placed into memory and those parts
that are valid are declared as such. Loss of this final packet
results in the loss of the entire message. Therefore, large
loss rates (~5%) can lead to very low throughput for large
sized messages. However, the performance for more
typically used smaller messages is excellent.

Overall, we can observe that datagram iWARP clearly
has great benefits in terms of bandwidth for our software
implementation. We would therefore expect that the
hardware proposed by this proof of concept would have
excellent throughput, although obviously limited in its
maximum bandwidth by the link speed itself. These
performance results show that such a scheme can provide
high bandwidth, while in hardware, requiring no CPU
intervention.

The effectiveness of iWARP UD RDMA Write-Record
is clear in that it has latency comparable to the best
alternative method (UD send/recv), and it clearly has the best
bandwidth performance of any of the methods. In Ethernet
networking in a commercial environment, the bandwidth
performance is much more important than the latency
performance, as even moderately sized transmission ranges
lessen the impact of the lowered latency at the system side.

UD RDMA Write-Record Bandwidth under Packet

Loss Conditions

0

50

100

150

200

250

1 4 16 64 256 1K 4K 16K 64K 256K 1MB

Message Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

0.1% loss 0.5% loss 1% loss 5% loss

Figure 8. UD RDMA Write-Record Bandwidth Under Packet Loss

Conditions

B. Application Results

The iWARP socket interface has been tested using a
variety of custom coded socket tests, as well as testing using
widely accepted socket based software. It is designed to
work over any application that uses a datagram or stream
socket. It has been tested with VideoLan’s VLC [28] a
popular media streaming application as well as SIPp [8], a
testing framework for load testing SIP servers.

1) VideoLan’s VLC media player - VLC [28] was

chosen for performance testing of datagram iWARP. In

order to assess datagram-iWARP’s real world performance

benefits for a media streaming application it was necessary

to compare VLC’s UDP streaming mode with an RC

compatible mode (HTTP-based) for a UD vs. RC

comparison. In comparing the two approaches as seen in

Figure 9, we can observe that the UD mode of operation

results in a 74.1% reduction in media initial buffering time

over the HTTP-based RC alternative. This represents a

significant increase in throughput for the system of almost

three times the throughput of a RC based system. However,

it should be noted that there is more inherent overhead

involved in the HTTP based method, and therefore the

performance gap between the application modes is due only

partially to the datagram-iWARP to RC-iWARP difference.
However it can be observed that the performance difference
between send/recv and RDMA Write-Record is minimal.
This is due to the need in the software socket interface to
provide support for many buffers passed into a single socket.
In order to effectively support the use of multiple buffers on
a single socket, we have elected not to re-exchange
(advertise) remote buffer locations for every new buffer due
to the required overhead and subsequently reduced
performance, but to copy the data over to the supplied buffer
location instead. This makes both RDMA Write-Record and
send/recv almost identical in terms of performance when
using our socket interface. Therefore in the next sub-section,

we will present the UD results as a single performance
number instead of separating the results out for both
methods. Future enhancements to performance similar to
SDP’s buffered copy/zero copy methods will allow for a
differentiation in real-world performance, by using zero-
copy for large message sizes and buffered copy for smaller
messages. This also increases memory efficiency, as
intermediary buffers are not required for large messages, as
they are written directly into the application buffer.

2) SIPp Server/Client - We have examined the base

response time for interaction with the SIPp server. For

request/responses under a server under light load, we found

the request response averages seen in Figure 10. We observe

that the UD-iWARP response time is a 43.1% improvement

over that of RC-iWARP. This can be attributed to the TCP

overhead incurred.
Using SIPp [8] we have investigated the overall memory

benefits of using datagram-iWARP over traditional RC
iWARP. A SIPp server and client were generated and
configured as a client and server using a basic SipStone
client-server test. Figure 11 details the memory savings that
are possible when using datagram-iWARP on a SIP server
compared to RC in such a scenario. The memory savings
were calculated using the sum of the SIPp application
memory usage and the allocated slab buffer space used to
create the required sockets. This means that the memory
usage is a whole application space (including iWARP
memory usage) memory usage comparison including kernel
space memory for the sockets. SIPp was configured to
generate a load emulating many clients, which creates a
single UDP port for each client. We find that at 10000
clients, we have a memory savings of 24.1%. Theoretical
calculations based solely on the iWARP socket size (using
one socket per client) predict that such a case would result in
a 28.1% memory improvement over RC. The resulting 4%
difference can be directly attributed to the application’s
memory usage, which would require some additional book
keeping to keep track of the states of the calls over the UDP
ports to determine when to close the ports. Although the
actual amount of memory used in this test is not excessive, it
can become more onerous on systems supporting hundreds
of thousands to millions of clients.

We have measured the overhead caused by using the
datagram-iWARP socket interface when doing the most
network intensive task available during video streaming, the
pre-buffering required before beginning playback. We have
found a very minimal approximate 2% increase in overall
pre-buffering time when using our socket interface over
using native UDP. As such, the interface has very low
overhead, as the overall overhead of the software iWARP
solution and the socket interface is only a 2% penalty over
the native UDP networking stack, which our iWARP
software solution uses at the lower layers. Therefore, we can
conclude that for such applications, the software iWARP
solution is viable, and a hardware iWARP solution should
therefore be able to significantly improve performance while
having very little overhead running over a software socket
interface.

VLC Streaming Media Buffering Performance

0

200

400

600

800

1000

1200

1400

UD RC
Transport Type

T
im

e
 (

m
s

)

Send/Recv RDMA Write (Record)

Figure 9. VLC UD Streaming vs. RC-based HTTP Streaming

SIP Response times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

UD RC

Transport

T
im

e
 (

m
s
)

Figure 10. SIP Response Times

% Improvment in Memory Usage - UD vs RC

0

5

10

15

20

25

30

100 1000 10000

Number of Concurrent Calls

%
 I
m

p
ro

v
e

m
e

n
t

Figure 11. SIP Improvement in memory usage using datagram-iWARP

over traditional iWARPConclusions and Future Work

Datagram-iWARP has been shown to be effective in both
HPC [22] and datacenter environments. The advantages of a
scalable connectionless transport are numerous and the
efficiency improvements that can be realized are significant.
As datagram traffic is expected to dominate future WAN
traffic, the inclusion of datagram support for modern high
performance interconnects is an important step in broadening
the application space for RDMA-enabled network
technologies. This paper represents a major milestone in the
development of RDMA technology. It is the first proposal
that provides RDMA over unreliable datagrams, and is
consequently very scalable. As unreliable datagrams
become an ever-growing majority of Internet traffic this
proposal provides the opportunity to expand RDMA
technologies to a majority of applications and traffic,
particularly high bandwidth applications that are likely to use
datagrams.

In this paper we have provided a design for a full
featured datagram-iWARP solution. We have proposed a
new RDMA operation, RDMA Write-Record, which can be
utilized on any RDMA-enabled network, including
datagram-iWARP. In addition, we have implemented and
tested both a fully functional software datagram-iWARP
stack as well as a socket interface for providing iWARP
functionality to existing socket-based applications. The
performance of the datagram-iWARP send/recv and one-
sided RDMA operations were explored with real data center
applications, finding that one-sided RDMA Write-Record
can have significant performance benefits over send/recv. It
was found that the bandwidth of datagram-iWARP can
exceed that of traditional iWARP by up to 256% for RDMA
operations using large message, and that RDMA Write-
Record can outperform RC RDMA Write with up to a 24.4%
improvement in latency. It was also discovered that the
overhead of the software iWARP socket interface is
minimal.

We have examined the bandwidth performance of
iWARP under various packet loss scenarios and determined
the MTUs most appropriate for given network conditions.
We also determined that the considerations that we made for
packet loss have had the desired effect on the overall
bandwidth of our proposal; providing increased bandwidth
and partial delivery for those applications that can take
advantage of such features.

We evaluated the performance of some real-world
applications, which demonstrated that datagram-iWARP
could be useful in such contexts. It was observed that the
real-world memory scalability and performance of datagram
iWARP over SIP is excellent, providing a memory savings
of 24.1% and performance improvement of 43.1%, and that
performance over VLC can outperform RC by 74.1%. These
benefits will scale well with large commercial clusters. We
have shown that sockets-based applications can take
advantage of datagram-iWARP, and that it would be
beneficial to develop a protocol similar to SDP, but for
datagrams, that will leverage the advantages of RDMA
Write-Record for socket applications, to translate the verbs
performance benefits of Write-Record over to the sockets
domain.

In the future we would like to examine the performance
and memory scalability of our proposal on larger systems
and with different applications. We would like to develop a
protocol similar in concept to SDP for datagrams based on
our observations in this paper. It would also be useful to
expand the proposed concepts by utilizing a reliable
datagram transport, to provide datagram support for a larger
range of possible applications. We would also like to extend
this work by creating an interface to allow MPI to take
advantage of the new RDMA Write-Record over datagram-
iWARP and also propose UD-based RDMA Read for use in
HPC applications.

ACKNOWLEDGMENT

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada Grant
#RGPIN/238964-2005, Canada Foundation for Innovation
and Ontario Innovation Trust Grant #7154, Office of
Advanced Scientific Computing Research, Office of Science,
U.S. Department of Energy, under Contract DE-AC02-
06CH11357, and the National Science Foundation Grant
#0702182. We thank the anonymous reviewers for their
insightful comments and suggestions.

REFERENCES

[1] P. Balaji, W. Feng, S. Bhagvat, D. K. Panda, R. Thakur,

W. Gropp, “Analyzing the Impact of Supporting Out-of-

Order Communication on In-order Performance with

iWARP” Proceedings of the ACM International

Supercomputing Conference (SC07), Reno, Nevada,

November 2007.

[2] Cisco Systems Inc. (June 2, 2010). Hyperconnectivity and

the Approaching Zettabyte Era,

[http://www.cisco.com/en/US/solutions/collateral/ns341/ns52

5/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.pdf].

[3] D. Cohen, T. Talpey, A. Kanevsky, U. Cummings, M.

Krause, R. Recio, D. Crupnicoff, L. Dickman, P. Grun,

“Remote Direct Memory Access over the Converged

Enhanced Ethernet Fabric: Evaluating the Options”, 17th

IEEE symposium on High Performance Interconnects, New

York, NY, August 2009.

[4] P. Culley, U. Elzur, R. Recio, S. Baily, et. al. “Marker

PDU Aligned Framing for TCP Specification (Version 1.0)”,

RDMA Consortium, October 2002.

[5] D. Dalessandro, A. Devulapalli, P. Wyckoff, “Design and

Implementation of the iWARP Protocol in Software” Parallel

and Distributed Computing and Systems (PDCS'05), Phoenix,

AZ, November 2005.

[6] D. Dalessandro, A. Devulapalli, P. Wyckoff, “iWARP

Protocol Kernel Space Software Implementation”, 20th IEEE

International Parallel & Distributed Processing Symposium

(IPDPS’06), Rhodes, Greece, 2006.

[7] W. Feng, P. Balaji, L. N. Bhuyan, D. K. Panda,

“Performance Characterization of a 10-Gigabit Ethernet

TOE”, 13th International Symposium on High Performance

Interconnects, Stanford, CA, August 2005.

[8] R. Gayraud et al., “SIPp Traffic Generator”, Nov. 2009;

http://sipp.sourceforge.net/.

[9] Brice Goglin, “Design and Implementation of Open-MX:

High-Performance Message Passing over Generic Ethernet

Hardware”, 22nd IEEE International Parallel & Distributed

Processing Symposium (IPDPS’08), Miami, FL, April 2008.

[10] J. Hilland, P. Culley, J. Pinkerton, R. Recio. “RDMA

Protocol Verbs Specification (version 1.0)”, RDMA

Consortium, October 2002.

[11] G. Huston, “TCP Performance”, The Internet Protocol

Journal - Volume 3, No. 2, Cisco Systems, June 2000.

[12] InfiniBand Trade Association, “InfiniBand Architecture

Specification” Vol. 1, Release 1.2.1, November 2007.

[13] Internet Engineering Task Force: http://www.ietf.org.

[14] B. Metzler, P. Frey, A. Trivedi, “A Software iWARP Driver

for OpenFabrics” IBM Zurich Research Lab, Presented in

OpenFabrics Alliance 2010 Sonoma Workshop, March 2010.

[15] MPI Forum, ‘MPI: A Message Passing Interface Standard,”

v2.2, September 2009.

[16] Myricom homepage: http://www.myri.com.

[17] Network Working Group, “Stream Control Transmission

Protocol (SCTP)”, Editor: R. Stewart, IETF RFC4960,

September 2007.

[18] Ohio Supercomputer Center, “Software Implementation and

Testing of iWARP Protocol”:

http://www.osc.edu/research/network_file/projects/iwarp/iwar

p_main.shtml.

[19] OpenFabrics Alliance: http://www.openfabrics.org/.

[20] J. Pinkerton, E. Deleganes, M. Krause, “Sockets Direct

Protocol for iWARP over TCP”, RDMA Consortium, October

2003.

[21] M. J. Rashti, A. Afsahi, “10-Gigabit iWARP Ethernet:

Comparative performance analysis with InfiniBand and

Myrinet-10G”, 21st IEEE International Parallel and

Distributed Processing Symposium (IPDPS’07), Long Beach,

CA, 2007.

[22] M. J. Rashti, R. E. Grant, P. Balaji, A. Afsahi, “iWARP

Redefined: Scalable Connectionless Communication over

High-Speed Ethernet”, High Performance Computing

Conference (HiPC’10), Goa, India, December 2010.

[23] RDMA Consortium: http://www.rdmaconsortium.org.

[24] R. Recio, P. Culley, D. Garcia, J. Hilland, “An RDMA

Protocol Specification (version 1.0)”, RDMA Consortium,

October 2002.

[25] H. Shah, J. Pinkerton, R. Recio, P. Culley. “Direct Data

Placement over Reliable Transports (version 1.0)”. RDMA

Consortium, October 2002.

[26] SLAC National Accelerator Laboratory, “PingER”, Aug.

2010; http://www-iepm.slac.stanford.edu/pinger/.

[27] H. Subramoni, P. Lai, M. Luo, D. K. Panda, “RDMA over

Ethernet - A Preliminary Study”, Workshop on High

Performance Interconnects for Distributed Computing

(HPIDC'09), September 2009.

[28] VideoLan Project, “VLC Media Player”, Aug. 2010;

http://www.videolan.org/vlc/.

